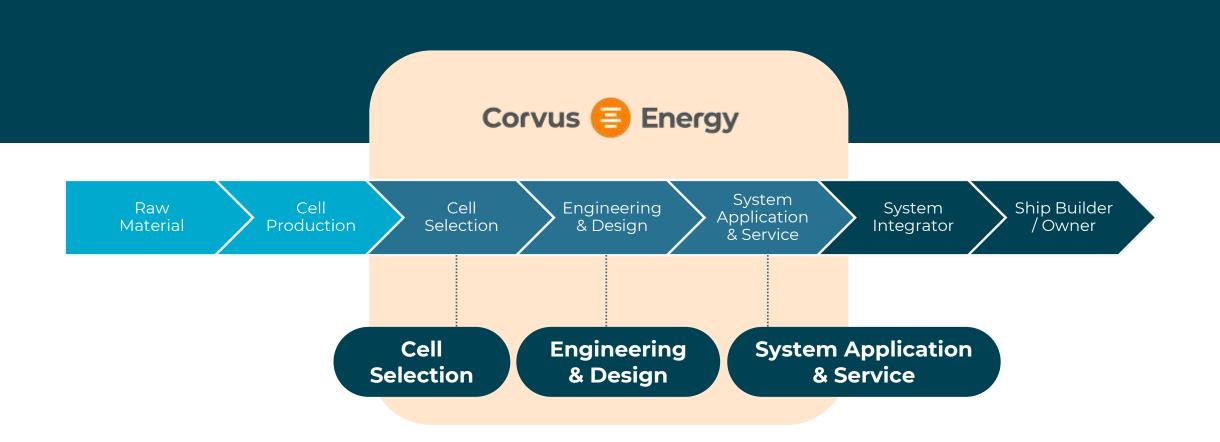


Powering a clean future

Maritime Batteries & Sumbat


June 16th, 2025 Lars Ole Valøen, EVP & CTO

Our Role

How Corvus Energy is positioned in the value chain

World largest battery electric vessel

Ro-Pax catamaran ferry

Length:130 m

Passengers: 2100

Vehicles: 225

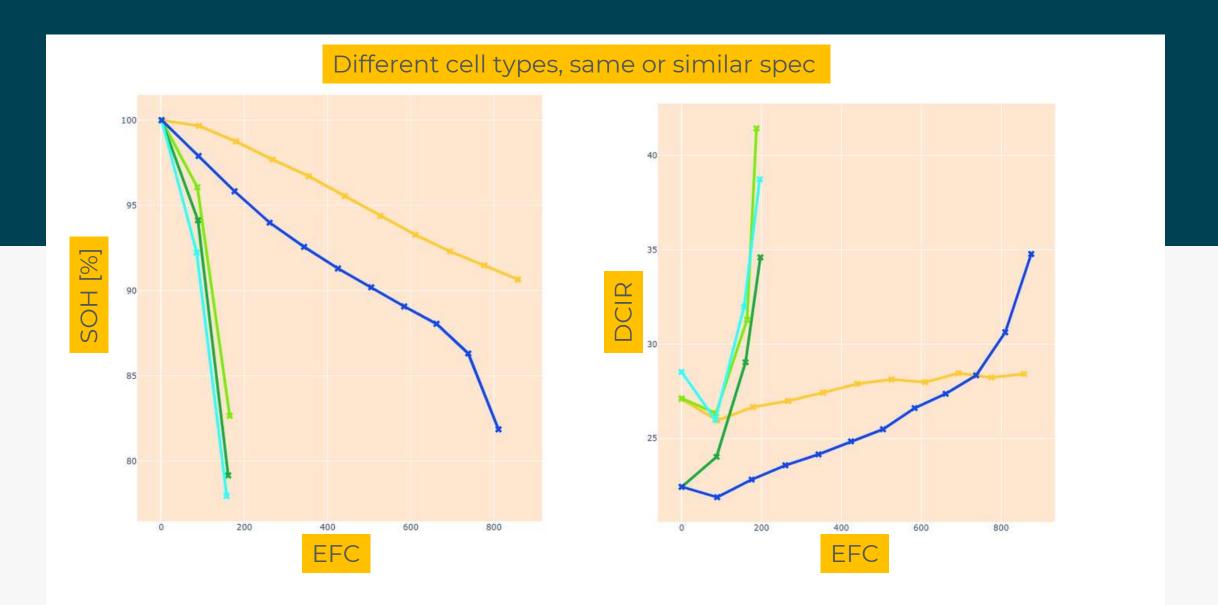
Hull: Aluminum

Route: Argentina ⇔ Uruguay

Vessel name: China Zorilla

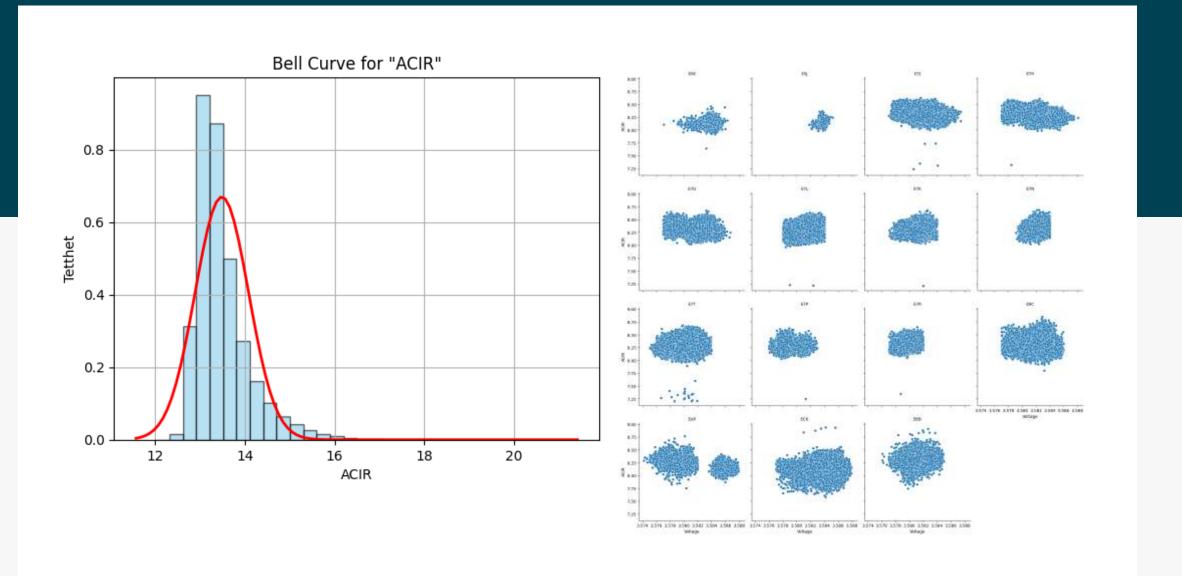
- Corvus Dolphin Energy
- 42 MWh/~250 tons
 - ~2.3M 21700 cells
 - ~5200 battery modules
 - Full battery system
 performance and life time
 model developed largely with
 the help of the Sumbat
 project

SP 3 Digital Framework for Battery Degradation


WP	What	Why?
3.1	Framework Development	Degradation models need a framework to ensure a systematic approach scalability and ability to keep the results up to date as new cell technologies become available
3.2	Non-invasive Model Parameterization	How far can we get without opening cells? Electrochemical information is often very abundant
3.3	Model Validation	No further explanation needed
3.4	Digital Design and Optimization Workflow	Throughout the life of a battery cell, every day (or even more often), cell properties changed permanently (usually for the worse)

For the world's largest battery powered vessel:

- Cell selection
- Cell degradation model vs operational profile and temperature



Accelerated testing of "equal" cells (selected results only)

But not all cells are created equal ...

SP 4 - Battery Safety and Lifetime Assessment

WP	What	Why
WP 4.1	Assessment of seawater current flow	Safety - only basic modeling carried out
WP 4.2	Conceptual solution design	Seawater – replaced with IP 67 goal for all components
WP 4.3	Quantification of effects from preventive solutions	Seawater – IP robustness
WP 4.4	End-of-life assessment of battery cells	Cell change tremendously over their life time. Capacity, impedance, safety
WP 4.5	Development of digital twin	Whole system including cell degradation
WP 4.6	Battery module thermal modeling	No twin without the thermal properties
WP 4.7	Tuning of the digital twin model	The proof of the twin is in the field response

For the world's largest battery powered vessel:

• Every day optimized operation

Vessel & system – digital twins throughout the battery life time

Maritime requirements for battery modeling exceeds most other industries; at Corvus we have with the help of Sumbat developed leading battery cell & system modeling frameworks supporting quality and robustness throughout the full life of the battery system

- Battery dimensioning
- Battery cell properties monitoring & data exchange with cell manufacturer
- Battery module manufacturing QC DCIR
- System commissioning and field trials
- System SOH test routines
- System continuous diagnostics
- System prognostics

Digital Twin

A digital model of a physical battery system

Given the operational profile, the digital twin model can:

- Simulate the electrical and thermal performances
- Simulate the degradation over time
- Takes BMS (Battery Management System) limits into account

Configuration

Product type, No. of modules and packs, SOC and SOH limits

Digital Twin

of an existing or future Corvus Battery System

Performance

Electrochemical & Thermal Degradation

Repeat for different configurations

→ Trends & estimation of impact of future innovations

Operational Profile

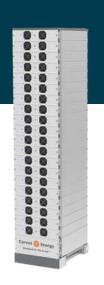
Time vs. Power/Current

SOH, SOC, Temperature

Corvus Products

Multiple product families and safety approaches for a diverse maritime market

Energy Storage Systems (ESS)


Fuel Cell System (FCS)

Corvus Orca

Corvus Blue Whale

Corvus
Dolphin NxtGen
Energy

Corvus

Dolphin NxtGen

Power

Corvus Pelican

Hydrogen Fuelled

High Performance Pouch Cells

Large SystemsPrismatic Cells

Light Weight Cylindrical Cells

Long Range

Thank you

Corvus Energy

Thanks to RFF, NFR, IN & EU for assisting Corvus in developing world leading maritime zero and low emission technology and solutions already preventing more than 10 million tons of CO_2 emission as well as substantial amounts of NO_{χ} , PMs etc literally saving the planet and saving lives